
NAG C Library Function Document

nag_zpotrf (f07frc)

1 Purpose

nag_zpotrf (f07frc) computes the Cholesky factorization of a complex Hermitian positive-definite matrix.

2 Specification

void nag_zpotrf (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, NagError *fail)

3 Description

nag_zpotrf (f07frc) forms the Cholesky factorization of a complex Hermitian positive-definite matrix A

either as A ¼ UHU if uplo ¼ Nag Upper, or A ¼ LLH if uplo ¼ Nag Lower, where U is an upper
triangular matrix and L is lower triangular.

4 References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of
Tennessee, Knoxville

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is
factorized, as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored and A is factorized as UHU ,
where U is upper triangular;

if uplo ¼ Nag Lower, the lower triangular part of A is stored and A is factorized as LLH ,
where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.

f07 – Linear Equations (LAPACK) f07frc

[NP3645/7] f07frc.1

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n Hermitian positive-definite matrix A. If uplo ¼ Nag Upper, the upper
triangle of A must be stored and the elements of the array below the diagonal are not referenced; if
uplo ¼ Nag Lower, the lower triangle of A must be stored and the elements of the array above the
diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by the Cholesky factor U or L as specified
by uplo.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1; nÞ.

6: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_POS_DEF

The leading minor of order hvaluei is not positive-definite and the factorization could not be
completed. Hence A itself is not positive-definite. This may indicate an error in forming the matrix
A. To factorize a Hermitian matrix which is not positive-definite, call nag_zhetrf (f07mrc) instead.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

If uplo ¼ Nag Upper, the computed factor U is the exact factor of a perturbed matrix Aþ E, where

jEj � cðnÞ�jUH j jU j;
cðnÞ is a modest linear function of n, and � is the machine precision. If uplo ¼ Nag Lower, a similar
statement holds for the computed factor L. It follows that jeijj � cðnÞ� ffiffiffiffiffiffiffiffiffiffiffi

aiiajj
p

.

f07frc NAG C Library Manual

f07frc.2 [NP3645/7]

8 Further Comments

The total number of real floating-point operations is approximately 4
3
n3.

A call to this function may be followed by calls to the functions:

nag_zpotrs (f07fsc) to solve AX ¼ B;

nag_zpocon (f07fuc) to estimate the condition number of A;

nag_zpotri (f07fwc) to compute the inverse of A.

The real analogue of this function is nag_dpotrf (f07fdc).

9 Example

To compute the Cholesky factorization of the matrix A, where

A ¼

3:23þ 0:00i 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58þ 0:00i �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09þ 0:00i 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29þ 0:00i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_zpotrf (f07frc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda;
Integer exit_status=0;
Nag_UploType uplo_enum;
Nag_MatrixType matrix;

NagError fail;
Nag_OrderType order;
/* Arrays */
char uplo[2];
Complex *a=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07frc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;

#else

f07 – Linear Equations (LAPACK) f07frc

[NP3645/7] f07frc.3

pda = n;
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n* n, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

{
uplo_enum = Nag_Lower;
matrix = Nag_LowerMatrix;

}
else if (*(unsigned char *)uplo == ’U’)

{
uplo_enum = Nag_Upper;
matrix = Nag_UpperMatrix;

}
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}

if (uplo_enum == Nag_Upper)
{

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
}

/* Factorize A */
f07frc(order, uplo_enum, n, a, pda, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07frc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print factor */
x04dbc(order, matrix, Nag_NonUnitDiag, n, n, a, pda,

Nag_BracketForm, "%7.4f", "Factor", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
return exit_status;

}

f07frc NAG C Library Manual

f07frc.4 [NP3645/7]

9.2 Program Data

f07frc Example Program Data
4 :Value of N
’L’ :Value of UPLO

(3.23, 0.00)
(1.51, 1.92) (3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) (4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) (2.33, 0.14) (4.29, 0.00) :End of matrix A

9.3 Program Results

f07frc Example Program Results

Factor
1 2 3 4

1 (1.7972, 0.0000)
2 (0.8402, 1.0683) (1.3164, 0.0000)
3 (1.0572,-0.4674) (-0.4702, 0.3131) (1.5604, 0.0000)
4 (0.2337,-1.3910) (0.0834, 0.0368) (0.9360, 0.9900) (0.6603, 0.0000)

f07 – Linear Equations (LAPACK) f07frc

[NP3645/7] f07frc.5 (last)

	f07frc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_POS_DEF
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

